178 lines
7.2 KiB
JavaScript
178 lines
7.2 KiB
JavaScript
// Original from Stefan Gustavson's Java implementation, ported by Sean McCullough
|
||
// see http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
|
||
//
|
||
// Adapted and Ported to ES6 by Norman Köhring <n‹Æt›koehr.in>
|
||
|
||
/**
|
||
* You can pass in a random number generator object if you like.
|
||
* It is assumed to have a random() method.
|
||
*/
|
||
var SimplexNoise = function(r) {
|
||
if (r == undefined) r = Math;
|
||
this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0],
|
||
[1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1],
|
||
[0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]];
|
||
this.p = [];
|
||
for (var i=0; i<256; i++) {
|
||
this.p[i] = Math.floor(r.random()*256);
|
||
}
|
||
// To remove the need for index wrapping, double the permutation table length
|
||
this.perm = [];
|
||
for(var i=0; i<512; i++) {
|
||
this.perm[i]=this.p[i & 255];
|
||
}
|
||
|
||
// A lookup table to traverse the simplex around a given point in 4D.
|
||
// Details can be found where this table is used, in the 4D noise method.
|
||
this.simplex = [
|
||
[0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0],
|
||
[0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0],
|
||
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
|
||
[1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0],
|
||
[1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0],
|
||
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
|
||
[2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0],
|
||
[2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]];
|
||
};
|
||
|
||
SimplexNoise.prototype.dot = function(g, x, y) {
|
||
return g[0]*x + g[1]*y;
|
||
};
|
||
|
||
SimplexNoise.prototype.noise = function(xin, yin) {
|
||
var n0, n1, n2; // Noise contributions from the three corners
|
||
// Skew the input space to determine which simplex cell we're in
|
||
var F2 = 0.5*(Math.sqrt(3.0)-1.0);
|
||
var s = (xin+yin)*F2; // Hairy factor for 2D
|
||
var i = Math.floor(xin+s);
|
||
var j = Math.floor(yin+s);
|
||
var G2 = (3.0-Math.sqrt(3.0))/6.0;
|
||
var t = (i+j)*G2;
|
||
var X0 = i-t; // Unskew the cell origin back to (x,y) space
|
||
var Y0 = j-t;
|
||
var x0 = xin-X0; // The x,y distances from the cell origin
|
||
var y0 = yin-Y0;
|
||
// For the 2D case, the simplex shape is an equilateral triangle.
|
||
// Determine which simplex we are in.
|
||
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
||
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
||
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
||
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
||
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
||
// c = (3-sqrt(3))/6
|
||
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
|
||
var y1 = y0 - j1 + G2;
|
||
var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
|
||
var y2 = y0 - 1.0 + 2.0 * G2;
|
||
// Work out the hashed gradient indices of the three simplex corners
|
||
var ii = i & 255;
|
||
var jj = j & 255;
|
||
var gi0 = this.perm[ii+this.perm[jj]] % 12;
|
||
var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12;
|
||
var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12;
|
||
// Calculate the contribution from the three corners
|
||
var t0 = 0.5 - x0*x0-y0*y0;
|
||
if(t0<0) n0 = 0.0;
|
||
else {
|
||
t0 *= t0;
|
||
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
|
||
}
|
||
var t1 = 0.5 - x1*x1-y1*y1;
|
||
if(t1<0) n1 = 0.0;
|
||
else {
|
||
t1 *= t1;
|
||
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
|
||
}
|
||
var t2 = 0.5 - x2*x2-y2*y2;
|
||
if(t2<0) n2 = 0.0;
|
||
else {
|
||
t2 *= t2;
|
||
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
|
||
}
|
||
// Add contributions from each corner to get the final noise value.
|
||
// The result is scaled to return values in the interval [-1,1].
|
||
return 70.0 * (n0 + n1 + n2);
|
||
};
|
||
|
||
// 3D simplex noise
|
||
SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
|
||
var n0, n1, n2, n3; // Noise contributions from the four corners
|
||
// Skew the input space to determine which simplex cell we're in
|
||
var F3 = 1.0/3.0;
|
||
var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
|
||
var i = Math.floor(xin+s);
|
||
var j = Math.floor(yin+s);
|
||
var k = Math.floor(zin+s);
|
||
var G3 = 1.0/6.0; // Very nice and simple unskew factor, too
|
||
var t = (i+j+k)*G3;
|
||
var X0 = i-t; // Unskew the cell origin back to (x,y,z) space
|
||
var Y0 = j-t;
|
||
var Z0 = k-t;
|
||
var x0 = xin-X0; // The x,y,z distances from the cell origin
|
||
var y0 = yin-Y0;
|
||
var z0 = zin-Z0;
|
||
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
||
// Determine which simplex we are in.
|
||
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
|
||
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
|
||
if(x0>=y0) {
|
||
if(y0>=z0)
|
||
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
|
||
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
|
||
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
|
||
}
|
||
else { // x0<y0
|
||
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
|
||
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
|
||
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
|
||
}
|
||
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
||
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
||
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
||
// c = 1/6.
|
||
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
|
||
var y1 = y0 - j1 + G3;
|
||
var z1 = z0 - k1 + G3;
|
||
var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
|
||
var y2 = y0 - j2 + 2.0*G3;
|
||
var z2 = z0 - k2 + 2.0*G3;
|
||
var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
|
||
var y3 = y0 - 1.0 + 3.0*G3;
|
||
var z3 = z0 - 1.0 + 3.0*G3;
|
||
// Work out the hashed gradient indices of the four simplex corners
|
||
var ii = i & 255;
|
||
var jj = j & 255;
|
||
var kk = k & 255;
|
||
var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12;
|
||
var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12;
|
||
var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12;
|
||
var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12;
|
||
// Calculate the contribution from the four corners
|
||
var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
|
||
if(t0<0) n0 = 0.0;
|
||
else {
|
||
t0 *= t0;
|
||
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0, z0);
|
||
}
|
||
var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
|
||
if(t1<0) n1 = 0.0;
|
||
else {
|
||
t1 *= t1;
|
||
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1, z1);
|
||
}
|
||
var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
|
||
if(t2<0) n2 = 0.0;
|
||
else {
|
||
t2 *= t2;
|
||
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2, z2);
|
||
}
|
||
var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
|
||
if(t3<0) n3 = 0.0;
|
||
else {
|
||
t3 *= t3;
|
||
n3 = t3 * t3 * this.dot(this.grad3[gi3], x3, y3, z3);
|
||
}
|
||
// Add contributions from each corner to get the final noise value.
|
||
// The result is scaled to stay just inside [-1,1]
|
||
return 32.0*(n0 + n1 + n2 + n3);
|
||
};
|